Abstract
Abstract An accurate and efficient solution procedure based on the three-dimensional elasticity theory for the free vibration analysis of thick laminated annular sector plates is presented. Plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. In order to accurately model the variation of material properties across the thickness, the layerwise theory is used to approximate the displacement components in this direction. Then, employing the Hamilton’s principle together with the modal analysis, through-the-thickness and circumferential discretized form of the equations of motion and the related boundary conditions are obtained. Finally, the differential quadrature method (DQM) as an efficient and accurate numerical method is applied to discretize the resulting variable coefficients differential equations in the radial direction. The fast rate of convergence of the method is demonstrated and to show its high accuracy, comparison studies with the available results in the literature are made. Finally, some new results are prepared, which can be used as benchmark solutions for future works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.