Abstract

The main purpose of this paper is to investigate free vibration behaviors of functionally graded sector plates with general boundary conditions in the context of three-dimensional theory of elasticity. Generally, the material properties of functionally graded sector plates are assumed to vary continuously and smoothly in thickness direction. However, the changes in the material properties may occur in the other directions, such as radial direction. Therefore, two types of functionally graded annular sector plates are considered in the paper. In this work, both the Voigt model and Mori-Tanaka scheme are adopted to evaluate the effective material properties. Each of displacements of annular sector plate, regardless of boundary conditions, is expressed as modified Fourier series which consists of three-dimensional Fourier cosine series plus several auxiliary functions introduced to overcome the discontinuity problems of the displacement and its derivatives at edges. To ensure the validity and accuracy of the method, numerous examples for isotropic and functionally graded sector plates with various boundary conditions are presented. Furthermore, new results for functionally graded sector plates with elastic restraints are given. The effects of the material profiles and boundary conditions on the free vibration of the functionally sector plates are also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call