Abstract

This paper describes the design of a three-dimensional formation flying guidance and control algorithm for a swarm of autonomous Unmanned Aerial Vehicles (UAVs), using the new approach of bifurcating artificial potential fields. We consider a decentralized control methodology that can create verifiable swarming patterns, which guarantee obstacle and vehicle collision avoidance. Based on a steering and repulsive potential field the algorithm supports flight that can transition between different formation patterns by way of a simple parameter change. The algorithm is applied to linear longitudinal and lateral models of a UAV. An experimental system to demonstrate formation flying is also developed to verify the validity of the proposed control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.