Abstract

BackgroundExisting clinical measures to describe foot morphology are limited in that they are commonly two-dimensional, low in resolution and accuracy, and do not accurately represent the multi-planar and complex changes during development across childhood. Using three-dimensional (3D) scanner technology provides the opportunity to understand more about morphological changes throughout childhood with higher resolution and potentially more relevant 3D shape measures. This is important to advance the prevailing arguments about the typical development of children’s feet and inform the development of appropriate clinical measures. 3D shape descriptors derived from 3D scanning can be used to quantify changes in shape at each point of the 3D surface. The aim of this study was to determine whether 3D shape descriptors derived from 3D scanning data can identify differences in foot morphology between children of different ages.MethodsFifteen children were recruited from three age groups (2, 5, and 7 years of age). Both feet were scanned in bipedal stance, using the Artec Eva (Artec Group, Luxembourg, Luxembourg) hand-held scanner. Three dimensional shape descriptors were extracted from the 3D scans of the right foot, to create histograms for each age group and heat maps of representative participants for comparison.ResultsThere were changes to the dorsal, medial and lateral surfaces of the feet with age. The surfaces became less round along with an increase in indented areas. This is supported by the heat maps which demonstrated that the surfaces of the anatomical landmarks (e.g. the malleoli and navicular tuberosity) became more rounded and protruding, with indented surfaces appearing around these landmarks. On the plantar surface, the concavity of the midfoot was evident and this concavity extended into the midfoot from the medial aspect as age increased.ConclusionsThe findings of this study indicated that with increasing age the foot becomes thinner in 3D, with bony architecture emerging, and the medial longitudinal arch (MLA) increases in area and concavity. Three-dimensional shape descriptors have shown good potential for locating and quantifying changes in foot structure across childhood. Three-dimensional shape descriptor data will be beneficial for understanding more about foot development and quantifying changes over time.

Highlights

  • Existing clinical measures to describe foot morphology are limited in that they are commonly twodimensional, low in resolution and accuracy, and do not accurately represent the multi-planar and complex changes during development across childhood

  • Participants In order to explore the application of Three dimensional (3D) shape descriptors in the quantification of foot shape, a convenience sample of children were recruited from three age groups (2, 5, and 7 years of age) from local community groups and assigned to Group 1 (2 years old, n = 5), Group 2 (5 years old, n = 5) and Group 3 (7 years old, n = 5)

  • The second peak around 0.01 decreases from Group 1 to Group 2 and disappears in Group 3.The curvedness heat maps (Fig. 2b), show the increased area of lower curvedness and a decrease in medium curvedness on the lateral side of the dorsal surface with age, which agrees with the histogram and an increasing area of higher curvedness on the medial side

Read more

Summary

Introduction

Existing clinical measures to describe foot morphology are limited in that they are commonly twodimensional, low in resolution and accuracy, and do not accurately represent the multi-planar and complex changes during development across childhood. Using three-dimensional (3D) scanner technology provides the opportunity to understand more about morphological changes throughout childhood with higher resolution and potentially more relevant 3D shape measures. This is important to advance the prevailing arguments about the typical development of children’s feet and inform the development of appropriate clinical measures. The aim of this study was to determine whether 3D shape descriptors derived from 3D scanning data can identify differences in foot morphology between children of different ages. Understanding more about the three-dimensional shape and morphological changes through childhood is important to advance the prevailing arguments about the typical development of children’s feet [15] and inform the development of appropriate clinical measures

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call