Abstract

AbstractPebble clusters are common small‐scale morphological features in gravel‐bed rivers, occupying as much as 10 per cent of the bed surface. Important links exist between the presence of pebble clusters and the development of flow structures. These links are poorly understood at the three‐dimensional level. Particularly neglected has been the effect of clusters on the lateral flow characteristics. A laboratory study was conducted using a hydraulic flume, within which simulated pebble clusters were superimposed onto a plane bed of gravel material. High‐resolution three‐dimensional flow data were collected above the bed at two different flow depths using an acoustic Doppler velocimeter. The results present evidence of the importance of lateral flow in the development of turbulent flow structure. Narrow regions of high lateral and downstream turbulence intensity exist to both sides of clusters and in a three‐dimensional separation zone in their lee. This may indicate the presence of horseshoe‐type vortical structures analogous to those identified in less hydraulically rough environments. However, it is likely that these structures are more complicated given the mutual interference of the surrounding medium. The lateral flow was also identified as a key component in the upwelling identified by other authors in the lee of pebble clusters. The results of the vertical flow analysis confirm the hypothesis that six regions with distinct vertical flow characteristics exist above clusters: flow acceleration up the stoss‐side of the cluster; recirculation behind the cluster in the wake region; vortex shedding from the pebble crest and shear layer; flow reattachment downstream of the cluster; upwelling of flow downstream of the point of reattachment; and recovery of flow. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.