Abstract

The impact of the slit die geometry and the polymer melt flow characteristics on the extrudate swell behavior, which is a key extrusion operating parameter, is highlighted. Three-dimensional (3D) numerical simulations based on the finite element method are compared with their conventional two-dimensional (2D) counterparts at the same apparent shear rates using ANSYS Polyflow software. The rheological behavior is described by the differential multimode Phan-Thien-Tanner constitutive model, with polypropylene as a reference. It is shown that increasing the aspect ratio of the die geometry (width/height ratio variation from 1 to 20) contributes to a significant change in the 3D extrudate deformation (relative changes of 10% in several directions; absolute changes up to 30%) and delays the equilibrium axial position (up to a factor 10). High aspect ratios induce a switch to contract flow (swell ratio <1) for the edge height swell. The 3D extrudate swell strongly deviates from the 2D simplified case due to the die effect near the wall, even for higher aspect ratios. Also a different relation with the material parameters is recorded. The initially large swell behavior is followed by a small shrinkage flow in the middle height direction which cannot be captured by the 2D counterpart. The findings are supported by a comprehensive analysis of the velocity and stress fields in and out of the slit dies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.