Abstract

The propagation of intense optical beams in a gas undergoing ionization is analyzed through a three-dimensional finite-difference time-domain (3D-FDTD) scheme. The propagation dynamics include the effects of diffraction, nonlinear self-focusing, and ionization. For sufficiently intense optical beams the neutral gas undergoes ionization, generating a plasma which tends to defocus the beam. Balancing of diffraction, plasma defocusing, and nonlinear self-focusing may lead to self-guided results. In this paper, necessary relations have been introduced into the conventional FDTD formulation to account for the nonlinear behaviors. Furthermore, a concurrent utilization of computer memory and disk storage helps us in expanding the simulation domain to a considerable extent. Results of various simulation scenarios are offered using our FDTD code. Simulations indicate that gas ionization has considerable effects on the propagation characteristics of intense optical beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.