Abstract

Objectives The present comparative analysis aimed at evaluating which combination of restorative materials resulted in the most homogeneous stress and strain distributions. Methods A three-dimensional finite element analysis was performed. All the nodes on the external surface of the root were constrained in all directions. Eighteen experimental models with different material properties and configurations were simulated. An arbitrary load of 10 N was applied at 60° angle with tooth longitudinal axis on the palatal surface of the crown. Von Mises (equivalent stresses) energetic criterion was chosen. Results In all the models the values of both strain and stress recorded at the middle third of the buccal aspect of the root surface were at their maxima. On the contrary, the minimum values were noticed at level of both the apical portion of the post and the root apex. The maximum stresses were evidenced at level of the cemento–enamel junction (CEJ) on both the buccal and palatal aspects of root cement and dentin. Stress progressively decreased from the outer to the inner part of the root and from the CEJ towards the incisal margin of the crown as well. Significance The results of the present study would allow clinicians to make an informed choice from among available materials to restore endodontically treated teeth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call