Abstract

To suppress the lightning-induced voltages on a distribution line, lightning arresters and/or overhead shielding wire can be installed, and the effectiveness of these countermeasures are usually studied by simulations. Traditionally, field-to-transmission line coupling techniques based on the distributed-parameter circuit theory are used for the calculation of the lightning-induced voltages. Recently, the finite-difference time-domain (FDTD) method that directly and numerically solves Maxwell's equations was applied to the calculation of the lightning-induced voltages. Compared with the conventional methods, the FDTD-based calculation is advantageous in terms of the modeling of inhomogeneous ground parameters, 3-D structures, and grounding systems. But, in the previous works, the distribution line was simulated simply by a single-phase line. Moreover, the representation of lightning arresters in the FDTD method was not yet established. This paper proposes a technique to incorporate the lightning arresters in the FDTD-based lightning overvoltage calculations. In this technique, the voltage-current relationships of the lightning arresters are represented by piecewise linear curves, which can be obtained directly from the data sheets or measured results. For validation purpose, the lightning-induced voltages on a three-phase distribution line equipped with the lightning arresters and a multipoint-grounded overhead shielding wire are calculated by the proposed method, and the results are compared with those obtained by the conventional method and a very good agreement is found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call