Abstract

This article describes a shooting method for computing three-dimensional equilibria of pre-curved nonlinear beams with axial and shear flexibility using the intrinsic beam formulation. For distributed and concentrated follower loads acting on a cantilevered beam, the method amounts to a direct solution approach requiring only a single shot (zero iterations) to compute the equilibria. This is possible since the system equations are defined in a local coordinate system that rotates and translates with the beam, akin to the follower loads themselves. A general procedure employing nonconservative follower loads, which invokes the Picard–Lindelöf theorem on uniqueness and existence of solutions, is also introduced for finding all solutions for three-dimensional pre-curved beam problems with conservative loading. This is particularly useful in beam buckling problems where multiple stable and unstable solutions exist. Three-dimensional equilibrium solutions are generated for many loading cases and boundary conditions, including three-dimensional helical beams, and are compared to similar solutions where available in the literature. Excellent agreement is documented in all comparison cases. For buckling examples, the stability of the computed solutions is assessed using a dynamic finite element code based on the same intrinsic beam equations. Due to the ability to avoid iteration, the presented approach may find application in model-based control for practical three-dimensional problems such as the control of manipulators utilized in endoscopic surgeries and the control of spacecraft with robotic arms and long cables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call