Abstract

Second-order accurate elliptic solvers using Cartesian grids are presented for three-dimensional interface problems in which the coefficients, the source term, the solution and its normal flux may be discontinuous across an interface. One of our methods is designed for general interface problems with variable but discontinuous coefficient. The scheme preserves the discrete maximum principle using constrained optimization techniques. An algebraic multigrid solver is applied to solve the discrete system. The second method is designed for interface problems with piecewise constant coefficient. The method is based on the fast immersed interface method and a fast 3D Poisson solver. The second method has been modified to solve Helmholtz/Poisson equations on irregular domains. An application of our method to an inverse interface problem of shape identification is also presented. In this application, the level set method is applied to find the unknown surface iteratively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call