Abstract

The line method of analysis is applied to the Navier-Cauchy equations of elastic equilibrium to calculate the displacement distributions in various bodies containing cracks. The application of this method to these equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. When decoupling the equations and their boundary conditions is not possible, the use of a successive approximation procedure permits the analytical solution of the resulting ordinary differential equations. The results obtained show a considerable potential for using this method in the three-dimensional analysis of finite geometry solids and suggest a possible extension of this technique to nonlinear material behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call