Abstract
Abstract Three-dimensional elastic solutions are obtained for a functionally graded thick circular plate subject to axisymmetric conditions. We consider a isotropic material where the Young modulus depends exponentially on the position along the thickness, while the Poisson ratio is constant. The solution method utilises a Plevako’s representation form which reduces the problem to the construction of a potential function satisfying a linear fourth-order partial differential equation. We write this potential function in terms of Bessel functions and we pointwise assign mixed boundary conditions. The analytic solution is obtained in a general form and explicitly presented by assuming transversal load on the upper face and zero displacements on the mantle; this is done by superposing the solutions of problems with suitably imposed radial displacement. We validate the solution by means of a finite element approach; in this way, we highlight the effects of the material inhomogeneity and the limits of the employed numerical method near the mantle, where the solution shows a large sensitivity to the boundary conditions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.