Abstract

Directional solidification of a dilute binary alloy in a Hele-Shaw cell is modeled by a long-wave nonlinear evolution equation with zero flux and contact-angle conditions at the walls. The basic steady-state solution and its linear stability criteria are found analytically, and the nonlinear system is solved numerically. Concave-down (toward the solid) interfaces under physically realistic conditions are found to be more unstable than the planar front. Weakly nonlinear analysis indicates that subcritical bifurcation is promoted, the domain of modulational instability is expanded and transition to three-dimensional patterns is delayed due to the contact-angle condition. In the strongly nonlinear regime fully three-dimensional steady-state solutions are found whose characteristic amplitude is larger than that for the two-dimensional problem. In the subcritical regime secondary bifurcation to stable solutions is promoted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.