Abstract

Normal human subjects grasped a 3-D isometric handle with an otherwise unrestrained, pronated hand and exerted forces continuously to draw circles, ellipses and lemniscates (figure-eights) in specified planes in the presence or absence of a 3-D visual force-feedback cursor and a visual template. Under any of these conditions and in all subjects, a significant positive correlation was observed between the instantaneous curvature and angular velocity, and between the instantaneous radius of curvature and tangential velocity; that is, when the force trajectory was most curved, the tangential velocity was lowest. This finding is similar to that obtained by Viviani and Terzuolo (1982) for 2-D drawing arm movements and supports the notion that central constraints give rise to the relation between geometric and kinematic parameters of the trajectory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.