Abstract

Dose distributions generated from intensity-modulated-radiation-therapy (IMRT) treatment planning present high dose gradient regions in the boundaries between the target and the surrounding critical organs. Dose accuracy in these areas can be critical, and may affect the treatment. With the increasing use of IMRT in radiotherapy, there is an increased need for a dosimeter that allows for accurate determination of three-dimensional (3D) dose distributions with high spatial resolution. In this study, polymer gel dosimetry and an optical CT scanner have been employed to implement 3D dose verification for IMRT. A plastic cylinder of 17 cm diameter and 12 cm height, filled with BANG3 polymer gels (MGS Research, Inc., Madison, CT) and modified to optimal dose-response characteristics, was used for IMRT dose verification. The cylindrical gel phantom was immersed in a 24 x 24 x 20 cm water tank for an IMRT irradiation. The irradiated gel sample was then scanned with an optical CT scanner (MGS Research Inc., Madison, CT) utilizing a single He-Ne laser beam and a single photodiode detector. Similar to the x-ray CT process, filtered back-projection was used to reconstruct the 3D dose distribution. The dose distributions measured from the gel were compared with those from the IMRT treatment planning system. For comparative dosimetry, a solid water phantom of 24 x 24 x 20 cm, having the same geometry as the water tank for the gel phantom, was used for EDR2 film and ion chamber measurements. Root mean square (rms) deviations for both dose difference and distance-to-agreement (DTA) were used in three-dimensional analysis of the dose distribution comparison between treatment planning calculations and the gel measurement. Comparison of planar dose distributions among gel dosimeter, film, and the treatment planning system showed that the isodose lines were in good agreement on selected planes in axial, coronal, and sagittal orientations. Absolute point-dose verification was performed with ion chamber measurements at four different points, varying from 48% to 110% of the prescribed dose. The measured and calculated doses were found to agree to within 4.2% at all measurement points. For the comparison between the gel measurement and treatment planning calculations, rms deviations were 2%-6% for dose difference and 1-3 mm for DTA, at 60%-110% doses levels. The results from this study show that optical CT based polymer gel dosimetry has the potential to provide a high resolution, accurate, three-dimensional tool for IMRT dose distribution verification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.