Abstract

We have fabricated silicon structure in silicate glass prepared with metallic aluminum in the starting material, using femtosecond laser irradiation and subsequent annealing. Small Si-rich structures such as oxygen-deficiency (O-deficiency) defects or Si clusters transform into nano-sized Si particles by the focusing irradiation of the laser. Then the Si-rich structures grow into micro-size particles due to the thermite reaction promoted by heat treatment. We determine the effect of focused laser pulse on the Si deposition process by using a time-resolved transient lens method with a sub-picosecond laser pulse. Localized high-temperature, high-pressure, and the generation of shock waves appear to be very important in forming the Si-rich structures that ultimately grow into Si particles. The diffusion of oxygen by shock waves and the existence of Al-rich structures help form Si-rich structures as Si-O bonds continuously break under high temperature. The focusing irradiation of femtosecond lasers is very useful for fabricating Si structures inside glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.