Abstract

Engineering thermogenic adipose tissue (e.g., beige or brown adipose tissues) has been investigated as a potential therapy for metabolic diseases or for the design of personalized microtissues for health screening and drug testing. Current strategies are often quite complex and fail to accurately fully depict the multicellular and functional properties of thermogenic adipose tissue. Microvascular fragments, small intact microvessels comprised of arteriole, venules, and capillaries isolated from adipose tissue, serve as a single autologous source of cells that enable vascularization and adipose tissue formation. This article describes methods for optimizing culture conditions to enable the generation of three-dimensional, vascularized, and functional thermogenic adipose tissues from microvascular fragments, including protocols for isolating microvascular fragments from adipose tissue and culture conditions. Additionally, best practices are discussed, as are techniques for characterizing the engineered tissues, and sample results from both rodent and human microvascular fragments are provided. This approach has the potential to be utilized for the understanding and development of treatments for obesity and metabolic disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.