Abstract

Solid polymer electrolytes (SPEs) are effective solutions for the development of high-performance and flexible lithium metal batteries (LMBs). However, the key problems of SPEs including low ionic conductivity and inability to repair damage have hindered their industrialization process. In this work, a three-dimensional (3D) cross-linked network gel polymer electrolyte (CNGPE) is designed. The addition of deep eutectic solvent (DES) improves the ionic conductivity of CNGPE. The hydrogen bonds and dynamic disulfide bonds in the 3D cross-linked network endow CNGPE rapid self-healing ability at ambient temperature. In addition, the addition of lithium difluoro(oxalato)borate (LiDFOB) and lithium nitrate (LiNO3) helps to form a stable solid electrolyte interface (SEI). Due to the ingenious design, the Li/CNGPE/Li symmetrical cell exhibits excellent interface stability and no short circuit occurs for more than 800 h. The assembled LiFePO4/CNGPE/Li cell exhibits a discharge specific capacity of 126 mAh g−1 after 960 cycles at 0.5C. This work has shown that the self-healing gel polymer electrolyte containing DES provides an effective and feasible method for the development of high-performance LMBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call