Abstract

Little is known about hypoxia-induced modification of the canal network in the cortical bone despite its involvement in intracortical vascularity and bone blood supply. In this study, we examined the effect of chronic hypoxia on the canal network in postnatal bone. Tibiae were harvested from 4- and 8-week-old rats (hyp-4 and -8, n = 8 each), whose growth was retarded owing to postnatal exposure to hypoxia (12-14% O₂), and from 3- and 4-week-old normoxic rats (cnt-4 and -5, n = 8 each), which were similar in tibial length and cortical cross-sectional area to hyp-4 and -8, respectively. The diaphyseal canals were detected by monochromatic synchrotron radiation CT with a 3.1-μm voxel resolution. The anatomical properties of the canal network were compared between age- or size-matched hypoxic and normoxic groups. The canals were larger in diameter, were more densely distributed and connected, and opened into the marrow cavity with a higher density in hyp-4 than in cnt-4. The canal density and connectivity were also higher in hyp-4 than in cnt-3. The canal diameter, density, and connectivity were smaller in hyp-8 than in cnt-4; however, the densities of endocortical and periosteal canal openings did not differ between hyp-8 and cnt-4. We concluded that chronic hypoxia enhanced the formation of cortical canal networks at the postnatal developmental stage, probably facilitating intra- and transcortical vascularization and bone perfusion accordingly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.