Abstract

Using a two-phase (rubbery and glassy) phenomenological model and shape memory strains, a three-dimensional constitutive model for shape memory polymers (SMPs) was developed that can simulate multi-axial and large deformation behavior (up to 200% of strain) of SMPs. To derive a constitutive equation, the total deformation gradient was multiplicatively decomposed into hyperelastic, viscoelastic, viscoplastic, and shape memory strains using Helmholtz free energy and the Clausius–Duhem inequality. The shape memory strain was determined from the total deformation by assuming proportionality to the total deformation. The developed constitutive model was validated by simulating the shape memory behavior of SMPs using a finite element method and comparing the simulation results with experiments. Finally, the capabilities of the constitutive equation were demonstrated by simulating constrained shape recovery behavior of SMPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call