Abstract

In laser cutting process, an assisting gas is used to improve the mass removal rate from the cutting kerf and protect the kerf surfaces from the high temperature exothermic reactions, such as oxidation reactions, during the cutting process. Therefore, heat transfer rates from the kerf wall and the skin friction along the kerf surface are important for quality cutting. In the present study, jet emerging from a conical convergent nozzle and impinging onto the kerf surface is investigated in relation to the laser cutting process. The flow field in the kerf, the heat transfer rates from the kerf wall, and the skin friction along the kerf surface are computed for four average jet velocities at the nozzle exit and two kerf wall wedge angles. The ratio of the stand-off-distance (distance between the nozzle exit and the kerf top surface) to nozzle diameter is selected as H/ D=2.2., where H is the stand-off-distance and D is the nozzle exit diameter. The kerf wall temperature is kept at 1500 K to resemble the laser cutting process. It is found that the Nusselt number increases sharply at the kerf inlet and decreases towards the kerf exit for the kerf wall angle of 0°. However, it increases gradually in this region for the kerf wedge angle of 4°. The skin friction decreases along the kerf surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call