Abstract

We propose an efficient algorithm for calculating photorealistic three-dimensional (3D) computer-generated hologram with Fourier domain segmentation. The segmentation of the spatial frequency processes the depth information from multiple parallel projections, recombining the wave fields of different viewing directions in the Fourier domain. Segmented angular spectrum with layer based processing is introduced to calculate the partitioned elements, which effectively extends the limited region of conventional angular spectrum. The algorithm can provide accurate depth cues and is compatible with computer graphics rendering techniques to provide quality view-dependent properties. Experiments demonstrate the proposed method can reconstruct photorealistic 3D images with accurate depth information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.