Abstract

The classical model of faulting predicts that slip planes occur in two conjugate sets. Theoretically, more sets can be contemporarily active if pre-existing structures are reactivated in a three-dimensional strain field. Four to six sets of faults have been active in the Holocene in the Zailiski Alatau mountain range, Kazakstan. Faults strike with the highest frequency ENE and ESE and show mostly left-lateral reverse and right-lateral reverse motions, respectively. These faults have a bimodal distribution of dips, forming four sets arranged in orthorhombic symmetry. Locally, NNW- to NNE- striking vertical faults have also been active in the Holocene and show right-lateral strike-slip and left-lateral strike-slip motions, respectively. All these fault sets accommodated the general three-dimensional deformation, given by N-S-directed horizontal shortening, vertical extension, and E-W-directed horizontal extension. Field evidence also shows that the reverse motions, even if with a minor strike-slip component, occurred on high-angle planes with inclination of 65°-85°. ENE- and ESE-striking faults reactivated older fracture zones, whereas the other sets are newly formed. Comparison of these field results with the structures obtained from published analogue models shows a strong similarity of fault geometry and kinematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.