Abstract

We report on the fabrication of three-dimensional colloidal crystal arrays (CCAs) on an underlying substrate via gravity sedimentation of TiO2-coated polystyrene (PS) colloidal particles. The beauty of the described system lies in the fact that obtained CCAs, for the first time, display a photonic band gap in the near-infrared (NIR) region with as much bandwidth (Δλ/λ) as 54−61%. Interestingly, stop band position and bandwidth have been found to be modulated with structural parameters of building blocks such as particle size and thickness of TiO2 shell, etc. Moreover, no significant change in stop band position was observed with the variation in incidence angle of the light. Theoretical calculations from the simulation studies have been found in agreement with the experimental findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.