Abstract

The transition-metal-based kagome metals provide a versatile platform for correlated topological phases hosting various electronic instabilities. While superconductivity is rare in layered kagome compounds, its interplay with nontrivial topology could offer an engaging space to realize exotic excitations of quasiparticles. Here, we use scanning tunneling microscopy (STM) to study a newly discovered Z$_2$ topological kagome metal CsV$_3$Sb$_5$ with a superconducting ground state. We observe charge modulation associated with the opening of an energy gap near the Fermi level. When across single-unit-cell surface step edges, the intensity of this charge modulation exhibits a {\pi}-phase shift, suggesting a three-dimensional 2$\times$2$\times$2 charge density wave ordering. Interestingly, a robust zero-bias conductance peak is observed inside the superconducting vortex core on the Cs 2$\times$2 surfaces that does not split in a large distance when moving away from the vortex center, resembling the Majorana bound states arising from the superconducting Dirac surface states in Bi$_2$Te$_3$/NbSe$_2$ heterostructures. Our findings establish CsV$_3$Sb$_5$ as a promising candidate for realizing exotic excitations at the confluence of nontrivial lattice geometry, topology and multiple electronic orders.

Highlights

  • The transition-metal-based kagome metals provide a versatile platform for correlated topological phases hosting various electronic instabilities

  • While conventional Caroli–de Gennes–Matricon bound states are observed inside the superconducting vortex on the Sb surfaces, a robust zero-bias conductance peak emerges that does not split in a large distance when moving away from the vortex center on the Cs 2 × 2 surfaces, resembling the Majorana bound states arising from the superconducting Dirac surface states in Bi2Te3=NbSe2 heterostructures

  • We find that the outer ring (q0) is almost nondispersing, which may potentially originate from Friedel oscillations (2kF) or Scanning tunneling microscopy (STM) setpoint effect [40]

Read more

Summary

Introduction

The transition-metal-based kagome metals provide a versatile platform for correlated topological phases hosting various electronic instabilities. Three-Dimensional Charge Density Wave and Surface-Dependent Vortex-Core States in a Kagome Superconductor CsV3Sb5

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call