Abstract

Alveolar ridge absorbs rapidly following tooth extraction. To promote implant rehabilitation, an adequate bone and soft tissue volume are required. Three-dimensional (3D) cell printing technique provides the advantages of precise spatial distribution and personalization. In this study, 3D cell printing was used to establish a soft-hard construct that is composed of alginate/gelatin (AG)/gingival fibroblast cells (GFs) and alginate/gelatin/nano-hydroxyapatite (AGH)/bone marrow-derived mesenchymal stem cells (BMSCs). Physicochemical results showed that nano-hydroxyapatite (nHA) added in the bioink maintained its crystalline phase. In addition, an increase of viscosity, the improvement of compressive modulus (p < 0.01), and slow degradation rate (p < 0.01) were found after adding nHA. SEM showed cell stretched and attached well on the surface of the 3D printed construct. At day 7 after printing, the viability of GFs in AG was 94.80% ± 1.14%, while BMSC viability in AGH was 86.59% ± 0.75%. Polymerase chain reaction results indicated that the expression levels of ALP, RUNX-2, and OCN in BMSCs were higher in AGH than AG bioink (p < 0.01). After 8-week implantation into the dorsum of 6- to 8-week-old male athymic and inbred (BALB/c) nude mice, the cellular printed construct displayed a more integrated structure and better healing of subcutaneous tissue compared with the acellular printed construct. In conclusion, this 3D cell printed soft-hard construct exhibits favorable biocompatibility and has potential for alveolar ridge preservation. Impact statement Alveolar ridge resorption after tooth extraction has posed great difficulty in the subsequent restorative procedure. Clinically, to preserve the dimension of alveolar ridge, covering soft tissue healing and underlying bone formation is necessary after tooth extraction. Three-dimensional (3D) cell printing, which can distribute different biomaterials and cells with spatial control, provides a novel approach to develop a customized plug to put in the fresh socket to minimize bone resorption and improve gingiva growth. In this study, an integrated and heterogeneous soft-hard construct with lock-key structure was successfully developed using 3D cell printing. The physicochemical and biological properties were tested in vitro and in vivo. This 3D cell printed soft-hard construct will be a customized plug in alveolar ridge preservation in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call