Abstract

For atmospheric photochemistry, clouds can significantly affect actinic flux distributions. In this paper, we examine the effects of convective clouds on the three-dimensional distribution of the spectral actinic flux and on photolysis frequencies for various chemical species. Three-dimensional solutions of the UV-VIS radiative transfer equation are produced using the Spherical Harmonic Discrete Ordinary Method solution technique. This solver uses as input the 3-D cloud characteristics simulated by a dynamical cloud model. The ultraviolet and visible spectra are divided into 5 intervals in order to explore the wavelength dependency of the cloud effect on the actinic flux. Results show that the distribution of the actinic flux over the cloud domain is far from homogeneous and depends primarily on the cloud extinction associated with the hydrometeors. Maximum actinic flux is found at the top edge of the cloud and is related to scattering by ice crystals. The actinic flux is enhanced by a factor of 2 to 5, compared to clear air values, above, at the top edge, and around the cloud. The 3-D actinic flux is used to calculate the photolysis rates for some chemical species (e.g. NO2, O3, and HCHO). Forcomputing photolysis rates, a discretized spectral representation of the absorption wavelengths is used in the model. The calculated photolysis rates are distributed inhomogeneously throughout the cloud, and maxima are found in regions where the actinic flux is enhancement is large. Temperature effects on absorption are found in the photolysis frequencies of some species. Finally, the potential importance of this photolysis enhancement on photochemistry is studied using box model simulations. Results show that enhanced OH concentrations are found in the upper troposphere (120–200%) overthe clouds and changes in ozone production rates (+15%) are obtained in quasi-steady state conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.