Abstract

The three-dimensional Navier-Stokes equation for the motion of ink both inside and outside the nozzle of a bubble jet printer is numerically solved, for the first time, to predict the bubble behavior and the drop ejection. The results of calculation for three types of ink agreed well with experimental data. The effect of initial bubble pressure, viscosity and surface tension on the volume and the velocity of the drop is numerically investigated. The three-dimensional calculation is very useful to the design of bubble jet printers because it saves a lot of time and cost to make and evaluate prototypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.