Abstract

While noninvasive electroenceph-alography (EEG) based brain-computer interfacing (BCI) has been successfully demonstrated in two-dimensional (2-D) control tasks, little work has been published regarding its extension to practical three-dimensional (3-D) control. In this study, we developed a new BCI approach for 3-D control by combining a novel form of endogenous visuospatial attentional modulation, defined as overt spatial attention (OSA), and motor imagery (MI). OSA modulation was shown to provide comparable control to conventional MI modulation in both 1-D and 2-D tasks. Furthermore, this paper provides evidence for the functional independence of traditional MI and OSA, as well as an investigation into the simultaneous use of both. Using this newly proposed BCI paradigm, 16 participants successfully completed a 3-D eight-target control task. Nine of these subjects further demonstrated robust 3-D control in a 12-target task, significantly outperforming the information transfer rate achieved in the 1-D and 2-D control tasks (29.7 ± 1.6 b/min). These results strongly support the hypothesis that noninvasive EEG-based BCI can provide robust 3-D control through endogenous neural modulation in broader populations with limited training. Through the combination of the two strategies (MI and OSA), a substantial portion of the recruited subjects were capable of robustly controlling a virtual cursor in 3-D space. The proposed novel approach could broaden the dimensionality of BCI control and shorten the training time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call