Abstract

We have investigated 3-dimensional brain current density reconstruction (CDR) from intracranial electrocorticogram (ECoG) recordings by means of finite element method (FEM). The brain electrical sources are modeled by a current density distribution and estimated from the ECoG signals with the aid of a weighted minimum norm estimation algorithm. A series of computer simulations were conducted to evaluate the performance of ECoG-CDR by comparing with the scalp EEG based CDR results. The present computer simulation results indicate that the ECoG-CDR provides enhanced performance in localizing single dipole sources which are located in regions underneath the implanted subdural ECoG grids, and in distinguishing and imaging multiple separate dipole sources, in comparison to the CDR results as obtained from the scalp EEG under the same conditions. We have also demonstrated the applicability of the present ECoG-CDR method to estimate 3-dimensional current density distribution from the subdural ECoG recordings in a human epilepsy patient. Eleven interictal epileptiform spikes (seven from the frontal region and four from parietal region) in an epilepsy patient undergoing surgical evaluation were analyzed. The present promising results indicate the feasibility and applicability of the developed ECoG-CDR method of estimating brain sources from intracranial electrical recordings, with detailed forward modeling using FEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.