Abstract
Medical image processing has been highlighted as an area where deep-learning-based models have the greatest potential. However, in the medical field, in particular, problems of data availability and privacy are hampering research progress and, thus, rapid implementation in clinical routine. The generation of synthetic data not only ensures privacy but also allows the drawing of new patients with specific characteristics, enabling the development of data-driven models on a much larger scale. This work demonstrates that three-dimensional generative adversarial networks (GANs) can be efficiently trained to generate high-resolution medical volumes with finely detailed voxel-based architectures. In addition, GAN inversion is successfully implemented for the three-dimensional setting and used for extensive research on model interpretability and applications such as image morphing, attribute editing, and style mixing. The results are comprehensively validated on a database of three-dimensional HR-pQCT instances representing the bone micro-architecture of the distal radius.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.