Abstract

In this paper, discrete random dopant distribution effects in sub-0.1 /spl mu/m MOSFET's were studied using three-dimensional drift-diffusion atomistic simulations. Effects due to the random fluctuation of the number of dopants in the MOSFET channel and the microscopic random distribution of dopant atoms in the MOSFET channel were investigated. We found that, in addition to the well-known fluctuation of the threshold voltage, there was an average shift of the threshold voltage to a lower value. The average shift was believed to be attributed to the inhomogeneity of channel potential due to the discreteness of channel dopants, and the logarithmic dependence of subthreshold current. Microscopic dopant distribution also gave rise to asymmetry in drain current upon interchanging the source and the drain. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.