Abstract
A solution is presented for the free vibration of very thick rectangular plates with depressions, grooves or cut-outs using three-dimensional elasticity equations in Cartesian coordinates. Simple algebraic polynomials which satisfy the boundary conditions of the plate are used as trial functions in a Ritz approach. The plate is modelled as a parallelepiped, and the inclusions are treated quite straightforwardly by subtracting the contribution to the strain and kinetic energy expressions of the volume removed, before minimizing the functional. The approach is demonstrated by considering a number of square thick plate cases, including a plate with a cylindrical groove, a shallow depression or a cylindrical cut-out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.