Abstract

In a high-gain free-electron laser (FEL) employing a planar undulator, strong bunching at the fundamental wavelength can drive substantial bunching and power levels at the harmonic frequencies. In this paper we investigate the three-dimensional evolution of harmonic radiation based on the coupled Maxwell-Klimontovich equations that take into account nonlinear harmonic interactions. Each harmonic field is a sum of a linear amplification term and a term driven by nonlinear harmonic interactions. After a certain stage of exponential growth, the dominant nonlinear term is determined by interactions of the lower nonlinear harmonics and the fundamental radiation. As a result, the gain length, transverse profile, and temporal structure of the first few harmonics are eventually governed by those of the fundamental. Transversely coherent third-harmonic radiation power is found to approach 1% of the fundamental power level for current high-gain FEL projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.