Abstract

A three-dimensional analysis of bending losses in dielectric optical waveguides is presented. It constitutes a nontrivial generalization of previous two- and three-dimensional studies by other authors. Our analysis is based on homogeneous integral equations for the total radiation field and suitable asymptotic approximations for Green’s functions. A key role is played by a new three-dimensional approximation for a relevant Bessel function with large order and argument (the former being larger than the latter). A nontrivial check of the consistency of all those approximations is given. General formulas are presented for the radiated field and the energy flow and for a bending-loss coefficient in three dimensions. Numerical results are also given, in order to assess the difference between the results of other authors and ours. Such a difference is rather small for monomode behavior near cutoff, increases as the behavior of the waveguide changes from monomode to multimode, and decreases as the parameter V increases for a given core radius and propagation mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.