Abstract

Abstract A three-dimensional analysis method for sloshing behavior of FBR is developed. The method treats the coolant in a reactor vessel as a potential flow with moving liquid surfaces. The Laplace equation of velocity potential is solved by a boundary element method with its boundary conditions described by a Bernoulli equation. The method is applied to analysis of sloshing behavior of uni- and multi-vessel type FBRs and results are presented. The latter consists of vessels for the core, heat exchangers and pumps, all of which are connected by piping. In the uni-vessel type, heat exchangers and pumps are placed in the reactor vessel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.