Abstract

ObjectiveTo investigate the spatial and temporal changes of anterior spinal artery (ASA) and anterior radicular artery (ARA) of chronic compressive spinal cord injury on rat model by three-dimensional micro-CT. Methods48 rats were divided into two groups: sham control group (n=24) and compressive spinal cord injury group (n=24). A C6 semi-laminectomy was performed in the sham control group, while a water-absorbable polyurethane polymer was implanted into C6 epidural space in the compression group. The Basso Beattie Bresnahan (BBB) score and somatosensory evoked potentials (SEP) were used to evaluate neurological function. Micro-CT scanning was used to investigate the change of ASA and ARA after perfusion at the 1th (n=6), 28th (n=6), 42th (n=6) and 70th (n=6) day of post operation. The diameter, angle-off and vascular index (VI) was measured by 3D micro-CT. ResultsIn comparison with sham control, BBB score have a significant reduction at the 28th day (p<0.05) and abnormal SEP have a significant severity at the 28th day (p<0.05). Both of them have a significant improvement at the 70th day compared with that of the 28th day (p<0.05). VI shows the amount of microvessels reduced at the 28th day (p<0.05) and increased at the 70th day (p<0.05). The diameter and angle-off of ASA and ARA also changed significantly at the 28th, 42th, 70th day (p<0.05). ConclusionThere was a significant alteration of cervical anterior spinal artery and anterior radicular artery after chronic cervical spinal cord compression. Alteration of ASA and ARA may affect the vascular density of spinal cord and play an important role in neural functional change of chronic cervical spinal cord compression through 3D micro-CT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call