Abstract
We numerically demonstrate the operation of a novel class of wavelength-division demultiplexing circuit based on photonic crystal waveguides that are entirely synthesized by ultralow-refractive-index metallic nanopillars. The operational principle of the newly proposed device is based on the phenomenon of total external reflections in ultralow-refractive-index metallic photonic crystal structures (metamaterials). In addition we provide detailed design guidelines for optimum device performance. The low propagation losses and compact size, as well as temperature-insensitive operation over a wide temperature range, are only a few of the advantages of the proposed technology, making this new type of demultiplexer an excellent candidate for applications in the visible spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.