Abstract

A theoretical description of photoinduced charge transfer involves explicit treating both the optical formation of the nuclear wave packet on the excited free energy surface and its ensuing dynamics. The reaction pathway constitutes two-stage charge transfer between three centers. Manifestations of fractional charge transfer at first stage are explored. An expression for time dependent rate constant of photoinduced charge transfer is found in the framework of the linear dielectric continuum model of the medium. The model involves both the intramolecular vibrational reorganization and the Coulombic interaction of the transferred charge with the medium polarization fluctuations and allows to express the rate in terms of intramolecular reorganization parameters and complex dielectric permittivity. The influence of the vibrational coherent motion in the locally excited state on the charge transfer dynamics has been explored. The dependence of the ultrafast photoinduced charge transfer dynamics on the excitation pulse carrier frequency (spectral effect) has been investigated. The spectral effect has been shown to depend on quantity of the fractional charge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call