Abstract

A three-axis, magnetometer/Kalman filter, attitude-determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve three-axis knowledge using magnetic field measurements only. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Covariance computation and simulation testing are used to evaluate performance. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir-pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as a part of a low-cost, three-axis attitude stabilization system. I. Introduction T HE objective of this work has been to develop a low-cost system for estimation of three-axis, spacecraft-attitude information based solely on three-axis magnetometer measurements from one satellite orbit. Such a system will be useful for missions that operate in an inclined, low-Earth orbit and require only coarse attitude information. It can also serve as the sensor part of a low-cost, three-axis, closed-loop attitude control system or as a backup attitude estimator. A single three-axis magnetometer measurement can give only two-axes worth of attitude information and no attitude rate or disturbance torque information. Therefore, this attitude determination system must use a sequence of magnetometer measurements. It processes these measurements recursively in a Kalman filter. This paper describes the design, development, analysis, and simulation testing of a Kalman filter arid reports its expected peformance. A follow-on, postlaunch paper is planned to report actual performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call