Abstract

ABSTRACT Planets orbiting young stars are thought to experience atmospheric evaporation as a result of the host stars’ high-magnetic activity. We study the evaporation history and expected future of the three known transiting exoplanets in the young multiplanet system K2-198. Based on spectroscopic and photometric measurements, we estimate an age of the K-dwarf host star between 200 and 500 Myr, and calculate the high-energy environment of these planets using eROSITA X-ray measurements. We find that the innermost planet K2-198c has likely lost its primordial envelope within the first few 10s of Myr regardless of the age at which the star drops out of the saturated X-ray regime. For the two outer planets, a range of initial envelope mass fractions is possible, depending on the not-yet-measured planetary mass and the stars’ spin-down history. Regarding the future of the system, we find that the outermost planet K2-198b is stable against photoevaporation for a wide range of planetary masses, while the middle planet K2-198d is only able to retain an atmosphere for a mass range between ∼7 and 18 M⊕. Lower mass planets are too susceptible to mass-loss, and a very thin present-day envelope for higher mass planets is easily lost with the estimated mass-loss rates. Our results support the idea that all three planets started out above the radius valley in the (sub-)Neptune regime and were then transformed into their current states by atmospheric evaporation, but also stress the importance of measuring planetary masses for (young) multiplanet systems before conducting more detailed photoevaporation simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call