Abstract

Three years of hourly O3 concentration measurements from a metropolitan and a medium scale urban area in Greece: Athens and Ioannina respectively, were analyzed in conjunction with hourly wind speed/direction data and air mass trajectories, aiming to reveal local and regional contributions respectively. Conditional Probability Function was used to indicate associations among distinct wind directions and extreme O3 episodes. Backward trajectory clusters were elaborated by Potential Source Contribution Function on a grid of a 0.5°×0.5° resolution, in order to localize potential exogenous sources of O3 and its precursors. In Athens, an increased likelihood of extreme O3 events at the Northern suburbs was associated with the influence of SSW–SW sea breeze from Saronikos Gulf, due to O3 transportation from the city center. In Ioannina, the impacts of O3 conveyance from the city center to the suburban monitoring site were weaker. Potential O3 transboundary sources for Athens were mainly localized over Balkan Peninsula, Greece and the Aegean Sea. Potential Source Contribution Function hotspots were isolated over the industrialized area of Ptolemaida basin and above the region of Thessaloniki. Potential regional O3 sources for Ioannina were indicated across northern Greece and Balkan Peninsula, whereas peak Potential Source Contribution Function values were particularly observed over the urban area of Sofia in Bulgaria. The implemented methods, revealed local and potential transboundary source areas of O3, influencing Athens and Ioannina. Differences among the two cities were highlighted and the role of topography was emerged. These findings can be used in order to reduce the emission of O3 precursors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call