Abstract

Mechanisms underlying the efficacy of sprint interval training (SIT) remain to be understood. We previously reported that an acute bout of SIT disrupts the integrity of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor 1 (RyR1), in recreationally active human subjects. We here hypothesize that in addition to improving the exercise performance of recreationally active humans, a period of repeated SIT sessions would make the RyR1 protein less vulnerable and accelerate recovery of contractile function after a SIT session. Eight recreationally active males participated in a 3-week SIT program consisting of nine sessions of four-six 30-s all-out cycling bouts with 4min of rest between bouts. Total work performed during a SIT session and maximal power (Wmax) reached during an incremental cycling test were both increased by ~ 7.5% at the end of the training period (P < 0.05). Western blots performed on vastus lateralis muscle biopsies taken before, 1h, 24h and 72h after SIT sessions in the untrained and trained state showed some protection against SIT-induced reduction of full-length RyR1 protein expression in the trained state. SIT-induced knee extensor force deficits were similar in the untrained and trained states, with a major reduction in voluntary and electrically evoked forces immediately and 1h after SIT (P < 0.05), and recovery after 24h. Three weeks of SIT improves exercise performance and provides some protection against RyR1 modification, whereas it does not accelerate recovery of contractile function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.