Abstract

Decision-making in fertility care is on the cusp of a significant frameshift. Online tools to integrate artificial intelligence into the decision-making process across all aspects of ART are rapidly emerging. These tools have the potential to improve outcomes and transition decision-making from one based on traditional provider centric assessments toward a hybrid triad of expertise, evidence, and algorithmic data analytics using AI. We can look forward to a time when AI will be the third part of a provider's tool box to complement expertise and medical literature to enable ever more accurate predictions and outcomes in ART. In their fully integrated format, these tools will be part of a digital fertility ecosystem of analytics embedded within an EMR. To date, the impact of AI on ART outcomes is inconclusive. No prospective studies have shown clear cut benefit or cost reductions over current practices, but we are very early in the process of developing and evaluating these tools. We owe it to ourselves to begin to examine these AI-driven analytics and develop a very clear idea about where we can and should go before we roll these tools into clinical care. Thoughtful scrutiny is essential lest we find ourselves in a position of trying to modulate and modify after entry of these tools into our clinics and patient care. The purpose of this commentary is to highlight the evolution and impact AI has had in other fields relevant to the fertility sector and describe a vision for applications within ART that could improve outcomes, reduce costs, and positively impact clinical care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.