Abstract
In complex environments, decision-making processes are more and more dependent on gathering, processing and analysis of huge amounts of data, often produced with different velocities and different formats by distributed sensors (human or automatic). Such streams of data also suffer of imprecision and uncertainty. On the other hand, Three-way Decision is considered a suitable approach for data analysis based on the tri-partitioning of the universe of discourse, i.e., exploiting the notions of acceptance, rejection and non-commitment, as well as the human brain does to solve numerous problems. Suppose the application scenario foresees the processing of data streams. In that case, the analysis task could be accomplished by considering the stream computing paradigm which is one of the most important paradigms in Big Data. With such a paradigm data arrives, is processed and departs in real-time without needing to be temporarily serialized into a storage system. This work analyzes the implementation of the Three-Way Decision approach, based on Rough Set Theory, on a real-time data processing platform supporting streaming computing, i.e., Apache Spark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.