Abstract

Nonlinear pulse compression mediated by three-wave mixing is demonstrated for ultrashort Ti:sapphire pulses in a type II phase-matched β-barium borate (BBO) crystal using noncollinear geometry. 170 μJ pulses at 800 nm with a pulse duration of 74 fs are compressed at their sum frequency to 32 fs with 55 μJ of pulse energy. Experiments and computer simulations demonstrate the potential of sum-frequency pulse compression to match the group velocities of the interacting waves to crystals that were initially not considered in the context of nonlinear pulse compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.