Abstract

We previously reported that three types of tobacco calmodulin (CaM) isoforms originated from 13 genes are differently regulated at the transcript and protein levels in response to wounding and tobacco mosaic virus-induced hypersensitive reaction (HR); wound-inducible type I and HR-inducible type III levels increased after wounding and HR, respectively, while type II, whose expression is constitutive and wound responsible, remained unchanged. Here, we show that these CaMs differentially activate target enzymes; rat NO synthase was activated most effectively by type III, moderately by type I and weakly by type II, and plant NAD kinase (NADK) was activated in the inverse order. Furthermore, we found that a suitable Ca2+ concentration differs by type; type II activated NADK at lower Ca2+ of around 0.1 microM, which is the cytosolic concentration in unstimulated cells, type I did so at 1-5 microM, which is the increased Ca2+ concentration in stimulated cells, while type III did not at any Ca2+ level. NADK activation was highest over a pH range of 7.1-6.8 for which the cytosolic pH reportedly changed from 7.5 after being stimulated. Thus, tobacco CaMs, especially type I, effectively activate NADK in stimuli-induced conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.