Abstract

The electrophysiological study of red blood cells (RBCs), using the patch-clamp technique, has been going through a renaissance with the recent discovery of novel channel activity in the host plasma membrane of Plasmodium falciparum-infected human RBCs (S.A. Desai et al., Nature 406, 1001–1005, 2000; S.M. Huber et al., EMBO J. 21 (2002) 22–30; S. Egee et al., J. Physiol. 542 (2002) 795–801). This arose from the finding that malaria-infected RBCs have altered permeability characteristics due to the induction of new permeation pathways (NPPs) (H. Ginsburg, Novartis Foundation Symposium 226 (1999) 99–108; K. Kirk, Physiol. Rev. 81 (2001) 495–537), which are defined, using non-electrophysiological techniques, as having the general characteristics of anion channels (i.e. high anion permeability, linear concentration dependence, inability to distinguish between stereo-isomers of permeant solutes). Discovering potent and specific inhibitors of the NPPs is an important therapeutic challenge, but too many questions remain unanswered: do the NPPs correspond to a single path or multiple pathways? Are they parasite-derived proteins? Are they up-regulated or modified endogenous quiescent red blood cell proteins? This article concerns the identification of different types of anionic channels that are expressed in malaria-infected human RBCs. Implications regarding the presence of these different types of channels in infected RBCs and their functional significance are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.