Abstract

This paper examined and compared the hydraulic and environmental performance of permeable interlocking pavers (PICPs), porous asphalt (PA), and porous concrete (PC) under cold climate conditions in Calgary, Alberta, Canada. Assessments were made of their hydraulic performance in terms of storm runoff reduction and surface infiltration capacity, and environmental performance in terms of the removal of several pollutants including total suspended solids (TSS), total nitrogen (TN), total phosphorous (TP) and, heavy metals: copper (Cu), lead (Pb), and zinc (Zn). Results from this paper demonstrated that PA, PC, and PICPs are all effective in mitigating storm runoff under cold climate conditions. Surface infiltration rate was substantially affected by winter sanding materials for PA, PC, and PICPs. Pressure washing was demonstrated to be able to partially restore surface infiltration rates for all three types of pavements. All pavement types in general have the same level of performance in removing TSS, TP, TN, and heavy metals. The removal of TSS, TP, and heavy metals appears to be independent of climatic conditions, whereas TN removal tends to decline with a decrease in pavement temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call